ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
C. A. Ciarcia, G. P. Couchell, J. J. Egan, G. H. R. Kegel, S. Q. Li, A. Mittler, D. J. Pullen, W. A. Schier, J. Q. Shao
Nuclear Science and Engineering | Volume 91 | Number 4 | December 1985 | Pages 428-443
Technical Paper | doi.org/10.13182/NSE85-A18359
Articles are hosted by Taylor and Francis Online.
Fast neutron inelastic scattering cross sections for levels between 700- and 1400-keV excitation energy in 232Th have been measured using the (n,n′) time-of-flight (TOF) technique. Measurements of 125-deg differential cross sections were made using neutrons with a typical energy spread of 8 to 10 keV, generated by the 7Li(p,n)7Be reaction. The incident neutron energies covered three regions: (a) 950 to 1550 keV in 50-keV intervals with the TOF spectrometer optimized to detect 200- to 600-keV scattered neutrons, (b) 1200 to 2000 keV in 100-keV intervals with the spectrometer optimized to detect 400- to 800-keV scattered neutrons, and (c) 1700 to 2100 keV in 100-keV steps with the spectrometer optimized for 800- to 1300-keV scattered neutrons. Throughout the experiment, an overall energy resolution of < 15 keV was maintained. Level cross sections were deduced from the 125-deg differential scattering cross sections and are compared with (n,n′λ) measurements and the ENDF/B-V evaluation. Angular distributions for states in the 700- to 900- keV region have been measured at 1.2, 1.5, and 2.0 MeV.