ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
Soon Heung Chang, Seong Ho Kim
Nuclear Science and Engineering | Volume 91 | Number 4 | December 1985 | Pages 404-413
Technical Paper | doi.org/10.13182/NSE85-A18357
Articles are hosted by Taylor and Francis Online.
A dryout model, based on the drift-flux approach to the separated two-phase countercurrent flow system with interfacial momentum transfer due to interphase friction, is derived in terms of a zero-dimensional and quasi-equilibrium form. The predictions of dryout heat flux in a large-particle debris bed within an overlying pool of saturated water and with complete blockage underneath are compared with various models and with the experimental results, which are available from the literature. The comparisons demonstrate the adequacy of the presented methodology.