ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
R. E. Maerker, B. L. Broadhead, J. J. Wagschal
Nuclear Science and Engineering | Volume 91 | Number 4 | December 1985 | Pages 369-392
Technical Paper | doi.org/10.13182/NSE85-A18355
Articles are hosted by Taylor and Francis Online.
The theory of a new methodology for quantifying and then reducing the uncertainties in the pressure vessel fluences (or fluxes) of a pressurized water reactor (PWR) is described. The theory involves combining the results of calculated and measured dosimetry integral experiments along with differential data used in the calculations, together with covariances, into a generalized linear least-squares adjustment code named LEPRICON. The procedure solves the translation problem necessitated by the use of ex situ PWR dosimetry, and its covariance reducing potential is further enhanced by simultaneously combining the PWR data with a data base consisting of the results of analysis of simpler benchmark experiments. Development of this data base and a demonstration of the uncertainty reduction with application to one of the benchmark experiments are also described. For the example chosen, covariances of the calculated fluxes were reduced by factors of between 4 and 8.