ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
ANS and the U.K.’s NI announce reciprocal membership agreement
With President Trump on a state visit to the U.K., in part to sign a landmark new agreement on U.S.-U.K. nuclear collaboration, a flurry of transatlantic partnerships and deals bridging the countries’ nuclear sectors have been announced.
The American Nuclear Society is taking an active role in this bridge-building by forming a reciprocal membership agreement with the U.K.’s Nuclear Institute.
R. E. Maerker, B. L. Broadhead, J. J. Wagschal
Nuclear Science and Engineering | Volume 91 | Number 4 | December 1985 | Pages 369-392
Technical Paper | doi.org/10.13182/NSE85-A18355
Articles are hosted by Taylor and Francis Online.
The theory of a new methodology for quantifying and then reducing the uncertainties in the pressure vessel fluences (or fluxes) of a pressurized water reactor (PWR) is described. The theory involves combining the results of calculated and measured dosimetry integral experiments along with differential data used in the calculations, together with covariances, into a generalized linear least-squares adjustment code named LEPRICON. The procedure solves the translation problem necessitated by the use of ex situ PWR dosimetry, and its covariance reducing potential is further enhanced by simultaneously combining the PWR data with a data base consisting of the results of analysis of simpler benchmark experiments. Development of this data base and a demonstration of the uncertainty reduction with application to one of the benchmark experiments are also described. For the example chosen, covariances of the calculated fluxes were reduced by factors of between 4 and 8.