ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
José M. Aragonés, Carol Ahnert
Nuclear Science and Engineering | Volume 94 | Number 4 | December 1986 | Pages 309-322
Technical Paper | doi.org/10.13182/NSE86-A18343
Articles are hosted by Taylor and Francis Online.
A linear discontinuous finite difference formulation to solve the diffusion equations in coarse mesh and few groups is developed. The correction factors for heterogeneities, coarse mesh, and spectral effects are general interface flux discontinuity factors that can be explicitly calculated (synthetized) from detailed diffusion or transport solutions in fine mesh (heterogeneous) and multigroups, preserving the integrated fluxes and interface net currents. The stability is explicitly established for general synthetizations and for specific fine to coarse mesh and group reductions. Computing methods have been implemented for one-group (grey) synthetic diffusion acceleration, two-dimensional nodal/local solutions, and three-dimensional nodal simulation of pressurized water reactor cores. Results demonstrate the simplicity and stability of the formulation, a regular behavior of the correction factors, an outstanding acceleration performance, and high potential for parallel and vector computing.