ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
José M. Aragonés, Carol Ahnert
Nuclear Science and Engineering | Volume 94 | Number 4 | December 1986 | Pages 309-322
Technical Paper | doi.org/10.13182/NSE86-A18343
Articles are hosted by Taylor and Francis Online.
A linear discontinuous finite difference formulation to solve the diffusion equations in coarse mesh and few groups is developed. The correction factors for heterogeneities, coarse mesh, and spectral effects are general interface flux discontinuity factors that can be explicitly calculated (synthetized) from detailed diffusion or transport solutions in fine mesh (heterogeneous) and multigroups, preserving the integrated fluxes and interface net currents. The stability is explicitly established for general synthetizations and for specific fine to coarse mesh and group reductions. Computing methods have been implemented for one-group (grey) synthetic diffusion acceleration, two-dimensional nodal/local solutions, and three-dimensional nodal simulation of pressurized water reactor cores. Results demonstrate the simplicity and stability of the formulation, a regular behavior of the correction factors, an outstanding acceleration performance, and high potential for parallel and vector computing.