ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
José M. Aragonés, Carol Ahnert
Nuclear Science and Engineering | Volume 94 | Number 4 | December 1986 | Pages 309-322
Technical Paper | doi.org/10.13182/NSE86-A18343
Articles are hosted by Taylor and Francis Online.
A linear discontinuous finite difference formulation to solve the diffusion equations in coarse mesh and few groups is developed. The correction factors for heterogeneities, coarse mesh, and spectral effects are general interface flux discontinuity factors that can be explicitly calculated (synthetized) from detailed diffusion or transport solutions in fine mesh (heterogeneous) and multigroups, preserving the integrated fluxes and interface net currents. The stability is explicitly established for general synthetizations and for specific fine to coarse mesh and group reductions. Computing methods have been implemented for one-group (grey) synthetic diffusion acceleration, two-dimensional nodal/local solutions, and three-dimensional nodal simulation of pressurized water reactor cores. Results demonstrate the simplicity and stability of the formulation, a regular behavior of the correction factors, an outstanding acceleration performance, and high potential for parallel and vector computing.