ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
R. E. Maerker, M. L. Williams, B. L. Broadhead
Nuclear Science and Engineering | Volume 94 | Number 4 | December 1986 | Pages 291-308
Technical Paper | doi.org/10.13182/NSE86-A18342
Articles are hosted by Taylor and Francis Online.
A technique is described to account for effects of space- and time-dependent core source variations on pressure vessel surveillance dosimetry analysis. The procedure first defines an easily implemented geometry for a single adjoint transport calculation. The results from the adjoint calculation can then be combined with those from a single forward calculation, in conjunction with an adjoint scaling technique, to yield activities and pressure vessel fluxes simultaneously for a wide range of source distributions, dosimeter response functions, and detector locations. This method has been implemented in the LEPRICON code system for vessel fluence determination. An application to an R-θ model of an operating power reactor shows that effects of source perturbations resulting in 20% changes in the core leakage can be predicted within ∼3% at both downcomer and cavity dosimeter locations, for six different dosimeters, by choice of a single suitable adjoint response function.