ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Louis M. Shotkin
Nuclear Science and Engineering | Volume 18 | Number 2 | February 1964 | Pages 271-279
Technical Paper | doi.org/10.13182/NSE64-A18327
Articles are hosted by Taylor and Francis Online.
A nonlinear analysis of parameter regions in the “two-temperature” reactor stability problem is accomplished using methods developed in the USSR for treating ordinary differential equations. It is shown that in a model where both temperature-dependent quantities obey Newton's law of cooling, stable limit cycles exist and centers do not exist. If one of the quantities obeys an adiabatic cooling law, centers exist and stable limit cycles do not exist. Solutions with finite escape time are found to exist for certain sets of parameters and initial conditions. Finally, when at least one linear characteristic root vanishes, it is shown that a first integral exists and that it is possible to discuss reactor behavior in terms of this integral.