ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Radiant to build first microreactor at Tenn. Manhattan Project site
Radiant Industries will build its first portable nuclear reactor at the site of the Manhattan Project in Oak Ridge, Tenn.
The land for Radiant’s new factory includes portions of the K-27 and K-29 Manhattan Project sites. The company plans to test Kaleidos, a 1-MW nuclear microreactor, in 2026, with first deployments expected soon after.
M. M. R. Williams
Nuclear Science and Engineering | Volume 18 | Number 2 | February 1964 | Pages 260-270
Technical Paper | doi.org/10.13182/NSE64-A18326
Articles are hosted by Taylor and Francis Online.
An exact solution to the energy-dependent Milne problem for isotropic scattering has been obtained using a simple separable scattering kernel. The extrapolation distance and angular distribution at the surface of the half-space have been calculated using the free-gas scattering cross sections. A further calculation for a very narrow kernel shows that the extrapolation distance is insensitive to the inelastic part of the scattering kernel, but depends mainly on the energy dependence of the mean free path. The results have been compared with numerical work obtained from the THERMOS code and thus provide a measure of the accuracy of THERMOS for this type of problem. The results also give physically reasonable bounds on the extrapolation distance and angular distributions.