ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
M. M. R. Williams
Nuclear Science and Engineering | Volume 18 | Number 2 | February 1964 | Pages 260-270
Technical Paper | doi.org/10.13182/NSE64-A18326
Articles are hosted by Taylor and Francis Online.
An exact solution to the energy-dependent Milne problem for isotropic scattering has been obtained using a simple separable scattering kernel. The extrapolation distance and angular distribution at the surface of the half-space have been calculated using the free-gas scattering cross sections. A further calculation for a very narrow kernel shows that the extrapolation distance is insensitive to the inelastic part of the scattering kernel, but depends mainly on the energy dependence of the mean free path. The results have been compared with numerical work obtained from the THERMOS code and thus provide a measure of the accuracy of THERMOS for this type of problem. The results also give physically reasonable bounds on the extrapolation distance and angular distributions.