ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Jakob Weitman
Nuclear Science and Engineering | Volume 18 | Number 2 | February 1964 | Pages 246-259
Technical Paper | doi.org/10.13182/NSE64-A18325
Articles are hosted by Taylor and Francis Online.
The effective resonance integral of thorium oxide rods has been determined as a function of their surface-to-mass ratio. The range of S/M values covered is 0.15 - 0.65 cm2/g. An experimental technique based on the comparison of activities obtained in thermal and slowing-down neutron fluxes was employed. The shape of the resonance neutron spectrum was determined from measurements with a fast chopper and from calculations, permitting deduction of a correction factor which relates the experimental values to the ideal 1/E case. The results are summarized by the following expression: The main contribution to the margin of error arises from the uncertainties in the 4% spectral correction applied, in the 1.5 b “l/v” part deducted and in the 1510 b infinite-dilution integral of gold, used as a standard. In order to compare the consistency of Dresner's first equivalence theorem and Nordheim's numerical calculations relative to our results, the resonance integral values for thorium metal rods obtained previously by Hellstrand and Weitman have been recalculated, using recent cross section and spectrum data. The new formula is It differs from the old one mainly because of the proved non-l/v behaviour of the thorium cross section below the first resonance.