ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE announces awards for three university nuclear education outreach programs
The Department of Energy’s Office of Nuclear Energy has announced more than $590,000 in funding awards to help three universities enhance their outreach in nuclear energy education. The awards, which are part of the DOE Nuclear Energy University Program (NEUP) University Reactor Sharing and Outreach Program, are primarily designed to provide students in K-12, vocational schools, and colleges with access to university research reactors in order to increase awareness of nuclear science, engineering, and technology and to foster early interest in nuclear energy-related careers.
E. Starr, H. Honeck, J. DeVilliers†
Nuclear Science and Engineering | Volume 18 | Number 2 | February 1964 | Pages 230-235
Technical Paper | doi.org/10.13182/NSE64-A18322
Articles are hosted by Taylor and Francis Online.
This describes an experimental technique to determine the average velocity of the thermal-neutron spectrum as a function of time in a pulsed-neutron experiment. The measurement of the average velocity as a function of time is used to determine two parameters: the time necessary to establish an asymptotic spectrum, and the average velocity of the asymptotic spectrum. The variation in the asymptotic average velocity with material buckling is described by a “spectral-shift coefficient” which is related to the diffusion-cooling coefficient. It was found necessary to wait 2 milliseconds for the establishment of an equilibrium spectrum in graphite, and 0.6 milliseconds in heavy water, and that these values are insensitive to the geometric buckling. Values of the spectral-shift coefficient are given and compared with theoretical estimates.