ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Richard B. Nicholson
Nuclear Science and Engineering | Volume 18 | Number 2 | February 1964 | Pages 207-219
Technical Paper | doi.org/10.13182/NSE64-A18320
Articles are hosted by Taylor and Francis Online.
A generalized method for estimating the energy release in hypothetical fast-reactor meltdown accidents is formulated. A modification of the Bethe-Tait method is derived from this more general formulation, and comparisons are made to an improved method, programmed for the IBM-7090 computer. Two basic assumptions are utilized: that the reactivity effects during disassembly can be calculated from perturbation theory, and that the decrease in density during disassembly can be ignored in the equations of hydrodynamics. It is shown that the threshold equation of state used in the Bethe-Tait method tends to cause an overestimate of the energy release for weak and moderate excursions, and that the saturated vapor pressure must be considered in those cases. The dependence of energy release upon prompt-neutron generation time, initial power level, rate of reactivity insertion, and Doppler effect is investigated.