ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Kazumi Iwamoto
Nuclear Science and Engineering | Volume 18 | Number 2 | February 1964 | Pages 189-199
Technical Paper | doi.org/10.13182/NSE64-A18318
Articles are hosted by Taylor and Francis Online.
Irradiated UO2 graphite fuel samples in which most of the fission products had recoiled into the graphite matrix were heated after irradiation, and then leached with nitric acid. The leach-ability of non-gaseous fission products was influenced by fission product concentration, by irradiation temperature, and largely by temperature and period of the heating. A possible rate-controlling mechanism for the fission product loss during the heating is discussed, and the results obtained are compared with some of the earlier work. The data may be interpreted as indicating that the fission products migrate through the graphite crystal to its surface according to a fast and a slow migration step. Escape from the graphite matrix by volatilization is apparently less rapid than the fast migration step; volatilization may be the rate-limiting mechanism in the loss process.