ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
G. Srikantiah
Nuclear Science and Engineering | Volume 24 | Number 2 | February 1966 | Pages 175-183
Technical Paper | doi.org/10.13182/NSE66-A18302
Articles are hosted by Taylor and Francis Online.
Methods of long-term reactivity control for plutonium-fueled D2O-moderated reactors that favor high conversion ratios are considered. One method uses annular gaps around the fuel elements that can be selectively filled with the D2O moderator. Reactivity compensations ranging from 8 to 15% can be achieved with gaps of 6 to 8-cm thickness and a corresponding reduction in conversion ratio of 3 to 5%. In the second method, depleted uranium sleeves that can be removed as required during long-term operation are utilized around fuel elements in annular regions of the reactor. Sleeves of only 0.2-cm thickness, around fuel elements in the central region of the reactor, provide reactivity compensations of up to 10% and actually increase the conversion ratio in the design studied. Average conversion ratios of about 0.90 are obtained in a large D2O-cooled and -moderated reactor using Zircaloy pressure tubes at fuel burnup of 104 MWd/t. The average conversion ratios would increase to about 0.97 if beryllium-based pressure tubes could be developed.