ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Y. Higashihara, Masaru Nakai, Masanori Okubo,
Nuclear Science and Engineering | Volume 27 | Number 2 | February 1967 | Pages 441-449
Technical Paper | doi.org/10.13182/NSE67-A18283
Articles are hosted by Taylor and Francis Online.
The albedo component of gamma rays passing through a straight cylindrical lead duct has been investigated experimentally for reactor leakage gamma rays impinging on the duct mouth at various angles of 0 through 90°. The distribution of the albedo component along the duct axis may be expressed in the form F(α)·(Z/a)-3 within the range of Z/a investigated. The contributions from multiple-reflection components to total dose have also been inferred. Also obtained were the radial distributions in both horizontal and vertical directions within and behind the duct., For a duct with one bend of 90°, the gamma-ray dose contributions arising from scattering areas located in both the first leg and the second leg have been determined separately for the incident beam angle of 0° with respect to the axis of the first leg.