ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
W. A. Coleman, R. E. Maerker, F. J. Muckenthaler, and P. N. Stevens
Nuclear Science and Engineering | Volume 27 | Number 2 | February 1967 | Pages 411-422
Technical Paper | doi.org/10.13182/NSE67-A18280
Articles are hosted by Taylor and Francis Online.
Extensive Monte Carlo calculations were performed to determine the distribution in energy and angle of neutrons reflected from steel-reinforced concrete for five incident directions and ten incident energy groups extending from 0.5 eV to 200 keV. The reflected distributions were determined in terms of a doubly differential albedo for each of 54 emergent directions for each energy group lying between and including the incident group and the tenth group (0.5 to 1.8 eV). The standard deviation of the doubly differential albedo averaged around ten percent. The angular slowing down density of the incident epicadmium neutrons within the slab was computed at 0.5 eV and was used as the source distribution for a Monte Carlo single-velocity diffusion calculation using 0.025-eV cross sections. From the diffusion calculation, the differential angular albedos of the reflected subcadmium neutrons and the depth distributions of captures occurring at subcadmium energies were obtained. Measurements of the differential angular albedo of emergent subcadmium neutrons due to a measured spectrum of incident monodi-rectional beams of epicadmium neutrons were performed at the ORNL Tower Shielding Facility in an experiment geometrically identical to that previously reported for incident subcadmium beams. Of the 35 common points of calculation and measurement, the two largest discrepancies are 23 and 36%; the remaining 33 comparisons produced a root-mean-square deviation of 4.5%.