ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
A. L. Kaplan
Nuclear Science and Engineering | Volume 27 | Number 2 | February 1967 | Pages 388-393
Technical Paper | doi.org/10.13182/NSE67-A18277
Articles are hosted by Taylor and Francis Online.
Attenuation by a floor barrier of fallout gamma radiation scattered into a basement has been studied experimentally with cylindrical steel structures. These structures were 2-ft high, 2-ft in diameter, with a 4-ft-deep basement. Wall thicknesses varied between 5 and 60 psf, with floor thicknesses of 0, 10, 20, and 40 psf. Detectors in the basement were located between 0.25 and 3 ft below ground. Cobalt-60 point sources were used to simulate the fallout field. Basement reduction factors predicted by structure shielding theory were lower than the experimental results by a factor of between 1.5 and 8. This discrepancy was attributed to the theoretical floor-barrier reduction factor. A new theoretical floor-barrier reduction factor, which is a function of both the floor thickness and the solid-angle fraction subtended at the detector by the floor, was constructed within the formalism of the existing structure shielding theory. This new function agreed quite well with both experimental results and Monte Carlo calculations, over the entire range of wall and floor thicknesses used in the experiment.