ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
R. H. Karcher
Nuclear Science and Engineering | Volume 27 | Number 2 | February 1967 | Pages 367-387
Technical Paper | doi.org/10.13182/NSE67-A18276
Articles are hosted by Taylor and Francis Online.
The transport of neutrons from a point source of simulated weapons radiation in infinite air is calculated. Weapons neutron spectra are simulated using a mixed source composed of a chopped fission spectrum with most of the neutrons below 0.4 MeV deleted, and an equivalent number distributed uniformly in the 12- to 16-MeV range. The results obtained are generally conservative, from a shielding standpoint, for most nuclear devices. The method of track length stretching is used to improve the efficiency of the Monte Carlo analysis for deep penetration calculations. Well-converged fast-neutron flux and dose data are obtained for penetration distances of about 400 g/cm2 (approximately 2 miles in sea-level air at 68°F). Energy spectra and angular distributions are calculated also; however, the convergence is less satisfactory in this case. It is found that the inelastic and capture gamma sources resulting from neutron interaction in air are of extremely low intensity and are probably negligible for most shielding applications. Integral and differential neutron air-transport data are tabulated as a function of penetration distance to facilitate their use in shielding calculations.