ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
R. H. Karcher
Nuclear Science and Engineering | Volume 27 | Number 2 | February 1967 | Pages 367-387
Technical Paper | doi.org/10.13182/NSE67-A18276
Articles are hosted by Taylor and Francis Online.
The transport of neutrons from a point source of simulated weapons radiation in infinite air is calculated. Weapons neutron spectra are simulated using a mixed source composed of a chopped fission spectrum with most of the neutrons below 0.4 MeV deleted, and an equivalent number distributed uniformly in the 12- to 16-MeV range. The results obtained are generally conservative, from a shielding standpoint, for most nuclear devices. The method of track length stretching is used to improve the efficiency of the Monte Carlo analysis for deep penetration calculations. Well-converged fast-neutron flux and dose data are obtained for penetration distances of about 400 g/cm2 (approximately 2 miles in sea-level air at 68°F). Energy spectra and angular distributions are calculated also; however, the convergence is less satisfactory in this case. It is found that the inelastic and capture gamma sources resulting from neutron interaction in air are of extremely low intensity and are probably negligible for most shielding applications. Integral and differential neutron air-transport data are tabulated as a function of penetration distance to facilitate their use in shielding calculations.