ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
R. L. French, J. H. Price, and K. W. Tompkins
Nuclear Science and Engineering | Volume 27 | Number 2 | February 1967 | Pages 360-366
Technical Paper | doi.org/10.13182/NSE67-A18275
Articles are hosted by Taylor and Francis Online.
Four simple enclosure shields were exposed to fallout from Shot Small Boy of Operation Sunbeam. Gamma-ray measurements were made both inside and outside the enclosures to determine time-dependent and time-integrated dose transmission factors (dose inside divided by dose outside). The analysis of the experiment consisted of calculating similar factors and comparing with the measured data. Monte Carlo procedures were used to determine the radiation distribution incident upon the shields and to compute the radiation penetration into the shields. Fallout gamma-ray spectra resulting from several different theoretical and experimental investigations were used in calculating the dose transmission factors. The calculated dose transmission factors were found to be consistently higher than the measured factors by as much as a factor of 2, depending upon the particular source term. After investigating several possible causes, it was concluded that the discrepancy was probably the cumulative effect of a deficiency of low-energy photons in the calculated source terms, omission of support structure inside the enclosure shields in the penetration calculations, and of neglecting the effects of ground roughness in the calculations.