ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Dominic J. Raso and Stanley Woolf
Nuclear Science and Engineering | Volume 27 | Number 2 | February 1967 | Pages 252-264
Technical Paper | doi.org/10.13182/NSE67-A18265
Articles are hosted by Taylor and Francis Online.
Calculations were performed by the Monte Carlo method to determine the dose at various detector locations behind a vertical barrier and below an adjacent horizontal barrier. Results were obtained, using two different Monte Carlo approaches, for a 1.25-MeV simulated ground source incident on 60, 40, and 20 psf of concrete. The results of the Monte Carlo calculations were used to calculate reduction factors. The above-ground reduction factors compared with those of Spencer to within 10%. The below-ground reduction factors were compared with those calculated from the OCD Engineering Manual, and the agreement in this case was found to be unsatisfactory. In some instances, discrepancies were found to be as high as a factor of 3. For the case of the open basement, agreement among the three methods was found to lie within 10 to 20%. The results obtained by the two Monte Carlo methods used were found to be in excellent agreement. These results also compared to within 10 to 15% with results of experiments performed at Technical Operations Research. The results indicate that further investigation is necessary to determine the amount of scattered radiation within a basement.