ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
J. Barclay Andrews, II, K. F. Hansen
Nuclear Science and Engineering | Volume 31 | Number 2 | February 1968 | Pages 304-313
Technical Paper | doi.org/10.13182/NSE68-A18242
Articles are hosted by Taylor and Francis Online.
A numerical method for the solution of the time-dependent multigroup diffusion equations is presented. The method has the property that it is numerically unconditionally stable for all changes in reactor properties and all integration time-step sizes. The method assumes that the neutron flux and precursor concentration can be expressed as an exponential function over each time step. As a result of this assumption, and the factoring of the matrix form of the multigroup equations, it is shown that for the case of a constant step change in the properties of the system the asymptotic numerical eigensolution is proportional to the asymptotic eigensolution of the differential equations. An analysis of the truncation error associated with the method is also presented. Finally, a number of numerical experiments are presented which illustrate the accuracy, speed, and general utility of the method.