ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
J. Barclay Andrews, II, K. F. Hansen
Nuclear Science and Engineering | Volume 31 | Number 2 | February 1968 | Pages 304-313
Technical Paper | doi.org/10.13182/NSE68-A18242
Articles are hosted by Taylor and Francis Online.
A numerical method for the solution of the time-dependent multigroup diffusion equations is presented. The method has the property that it is numerically unconditionally stable for all changes in reactor properties and all integration time-step sizes. The method assumes that the neutron flux and precursor concentration can be expressed as an exponential function over each time step. As a result of this assumption, and the factoring of the matrix form of the multigroup equations, it is shown that for the case of a constant step change in the properties of the system the asymptotic numerical eigensolution is proportional to the asymptotic eigensolution of the differential equations. An analysis of the truncation error associated with the method is also presented. Finally, a number of numerical experiments are presented which illustrate the accuracy, speed, and general utility of the method.