ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
“The time is now” to advance U.S. nuclear—Part 1
The Nuclear Regulatory Commission is gearing up to tackle an influx of licensing requests and oversight of advanced nuclear reactor technology, especially small modular reactors.
J. R. Beyster
Nuclear Science and Engineering | Volume 31 | Number 2 | February 1968 | Pages 254-271
Technical Paper | doi.org/10.13182/NSE68-A18238
Articles are hosted by Taylor and Francis Online.
The single differential cross section for neutron scattering from light water has been measured over the energy range 0.006 to 10 eV. The experimental techniques for making the measurement and correcting the data to obtain an absolute cross section are discussed. It is found that the multiple scattering of neutrons in the sample constitutes a large effect and procedures are utilized and tested for making this correction. The resulting cross sections are compared with predictions of theoretical models describing the molecular motion in water. These models include various versions of the free gas model, the Nelkin model, variations of the Haywood model, the McMurry model, and Radkowski prescription. Completely satisfactory agreement with the available neutron scattering data does not appear possible for any of the above models. The Haywood model seems to provide good agreement, however, for the widest range of data.