ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
Richard A. Hendrickson, Glenn Murphy
Nuclear Science and Engineering | Volume 31 | Number 2 | February 1968 | Pages 215-221
Technical Paper | doi.org/10.13182/NSE68-A18233
Articles are hosted by Taylor and Francis Online.
A method is developed to determine the ratio of the reactivity coupling coefficient to the mean generation time in a two-slab reactor based on experimental measurements of the inherent reactor-noise spectrum. A matrix formulation of the cross-spectral density function of the fluctuating neutron density at two experimental access locations adjacent to the cores is used in conjunction with a two-point reactor model to show that the real part of the cross-spectral density vanishes at a particular frequency, termed the sink frequency. The sink frequency is a function of the ratio of the reactivity coupling coefficient to generation time in the cores and the times required for neutron disturbances to travel between the cores and the detector locations. Experimental results from the UTR-10 reactor verify the predicted behavior of the cross-spectral density function in the neighborhood of the sink frequency and provide an at-critical measurement of the reactivity coupling coefficient.