ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
T. E. Murley, I. Kaplan
Nuclear Science and Engineering | Volume 31 | Number 2 | February 1968 | Pages 207-214
Technical Paper | doi.org/10.13182/NSE68-A18232
Articles are hosted by Taylor and Francis Online.
A method is presented for calculating the energy spectrum of fission neutrons slowing down in a homogeneous medium of arbitrary composition. The integral equation for ø(E) is solved by an iterative method, yielding a sum of partial spectra which are then summed to obtain a very simple expression for the slowing down spectrum. The effects of absorption and inelastic scattering are accounted for in an approximate manner. The fundamental-mode spectrum for a typical fast-reactor composition was calculated by this method, and the results agree favorably with the central spectrum from a 26-group diffusion calculation. A further application is given for using this method to generate weighting spectra for computing average multigroup cross sections.