ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
James A. Grundl
Nuclear Science and Engineering | Volume 31 | Number 2 | February 1968 | Pages 191-206
Technical Paper | doi.org/10.13182/NSE68-A18231
Articles are hosted by Taylor and Francis Online.
The energy spectra of neutrons from the the thermal-neutron-induced fission of 235U, 233U, and 239Pu have been compared by means of eight activation detectors that cover the energy range 0.8 to 16 MeV. The detectors are exposed to fission neutrons produced at the center of a 10-cm-diam spherical cavity within a heavywater moderator. Comparison of detector responses for the three spectra yield average energy ratios, 235U: 233U: 239Pu = (1): (1.021 ± 0.005): (1.039 ± 0.002). Differences between the normalized spectra are most pronounced at high energies as exemplified by the relative 239Pu: 235U flux ratios 1.17 for 6 < E < 11 MeV and 1.35 for E > 11 MeV. Spectral indexes for the 235U fission spectrum, based on measurements with monoenergetic neutrons, show progressively fewer neutrons above 6 MeV than given by the usual Maxwellian description of the fission spectrum, χ235U(E) = (0.770)E1/2 exp (−0.775E). At lower energies, the observed spectral indexes involving the 235U, Np, and 238U fission detectors are significantly discrepant with those predicted.