ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
M. K. Exeter, N. Hay, J. J. Webster, T. A. Dullforce
Nuclear Science and Engineering | Volume 83 | Number 2 | February 1983 | Pages 253-266
Technical Paper | doi.org/10.13182/NSE83-A18218
Articles are hosted by Taylor and Francis Online.
A finite element method of solution for laminar convection flows was used to obtain the flow, temperature, and heat transfer distributions for a heated copper block immersed in a tank of water simulating the debris tray cooling problem that can result after a core meltdown in a liquid-metal-cooled fast breeder reactor. Careful iteration has allowed the solution to be taken up to the onset of turbulence value of Gr · Pr ≃ 5 × 107. Comparison of the numerical solution with experimental results shows very good agreement. Local and average Nusselt numbers for this confined-flow situation are then derived from the solution, and it is shown that the existing correlations for flat plates in an infinite medium can be used to predict to a first approximation the behavior in the more complex geometries simulating the debris tray.