ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
M. Caro, J. Ligou
Nuclear Science and Engineering | Volume 83 | Number 2 | February 1983 | Pages 242-252
Technical Paper | doi.org/10.13182/NSE83-A18217
Articles are hosted by Taylor and Francis Online.
Handling the highly anisotropic scattering of fast neutrons with conventional methods usually means that high-order Legendre expansions can be necessary to obtain correct angular fluxes. This drawback in standard transport calculations is avoided by applying the Boltzmann-Fokker-Planck (BFP) method, already used in transport of charged particles, to neutrons. Two methods are described to obtain the relevant input data for the one-dimensional BFP-1 code, one using basic differential scattering cross sections and the other using existing standard multigroup libraries. Numerical results for both methods are produced, revealing BFP as a powerful method when solving transport problems dealing with very fast neutrons. It is found that high accuracy, even for extreme cases of anisotropy, is achieved without increase of the computational effort.