ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
William Primak, F. P. Roberts
Nuclear Science and Engineering | Volume 86 | Number 2 | February 1984 | Pages 191-205
Technical Paper | doi.org/10.13182/NSE84-A18201
Articles are hosted by Taylor and Francis Online.
Data for the differential thermal analysis (DTA) of a borosilicate glass (designed to incorporate high-level nuclear waste and designated 76-68) subjected to radiation damage by its curium content, are presented. The DTA curves for previously isothermally annealed samples can be explained by a distribution of processes in activation energy with a frequency factor ∼1014. The theory of uniform isothermal damaging is extended to the cases of saturating and decaying damaging. The beginning of the observed DTA curves cannot be explained in this simple manner. The theory of the annealing in a thermal spike associated with the recoiling radioactively decaying curium atoms is presented and appears to account for one of the features of the DTA curve. Other features appear to involve annealing during damaging with temperature gradients in the material associated with the self-heating during radioactive decay. However, these do not explain all of the features of the DTA curves, and, in particular, the low initial slope. It is suggested that the possibility of a radiation-enhanced annealing associated with ionization be considered. The stored energy saturates very early in the damaging. If the stored energy is associated with the actinide recoils, they would have to have a 60-Å effective radius of action, about that of 2-keV displaced atoms; if it is associated with the emitted alpha particles, they would have to have a 3- to 5-Å radius of action, corresponding to displacing individual atoms along their paths. Following a comparison with the behavior of ion-bombarded vitreous silica and silicate glasses, it is suggested that the stored energy is associated with fracture of network bonds.