ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
K. Wisshak, F. Käppeler, G. Reffo, F. Fabbri
Nuclear Science and Engineering | Volume 86 | Number 2 | February 1984 | Pages 168-183
Technical Paper | doi.org/10.13182/NSE84-A18199
Articles are hosted by Taylor and Francis Online.
The neutron capture widths of s-wave resonances in 56Fe (27.7 keV), 58Ni (15.4 keV), and 60Ni (12.5 keV) have been determined using a setup completely different from previous experiments. A pulsed 3-MV Van de Graaff accelerator and a kinematically collimated neutron beam, produced via the 7Li(p, n) reaction, were used in the experiments. Capture gamma rays were observed by three Moxon-Rae detectors with graphite, bismuth-graphite, and bismuth converters, respectively. The samples were positioned at a neutron flight path of only 9 cm. Thus, events due to capture of resonance-scattered neutrons in the detectors or in surrounding materials are completely discriminated by their additional time of flight. The high neutron flux at the sample position allowed the use of very thin samples (0.15 to 0.45 mm), avoiding large multiple scattering corrections. The data obtained with the individual detectors were corrected for the efficiency of the respective converter materials. For that purpose, detailed theoretical calculations of the capture gamma-ray spectra of the measured isotopes and of gold, which was used as a standard, were performed. The final results are Γγ(27.7 keV, 56Fe) = 1.06 ± 0.05 eV; Γγ(15.4 keV, 58Ni) = 1.53 ± 0.10 eV; and Γγ(12.5 keV, 60Ni) = 2.92 ± 0.19 eV. The accuracy obtained with the present experimental method represents an improvement by a factor 3 to 6 compared to previous experiments. The investigated s-wave resonances contribute 10 to 40% to the total capture rate of the respective isotopes in a typical fast reactor.