ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Robert E. Howe
Nuclear Science and Engineering | Volume 86 | Number 2 | February 1984 | Pages 157-167
Technical Paper | doi.org/10.13182/NSE84-A18198
Articles are hosted by Taylor and Francis Online.
Fission neutron multiplicities have been measured for neutrons incident on 232Th with energies ranging from 1.1 to 49 MeV and for neutrons incident on 235U with energies from 17 to 49 MeV. The Lawrence Livermore National Laboratory 100-MeV electron Linac was used to produce a white source of neutrons. Incident neutron energies were measured using time-of-flight techniques. Fission neutrons were detected in a liquid scintillator using pulse-shape discrimination. All 232Th neutron multiplicities were measured relative to 235U at each incident neutron energy. Above 15 MeV the multiplicities were determined for 232Th and 235U by using lower energy data from the 235U sample to measure the neutron detector efficiency. Corrections for angular anisotropy and spectral temperatures of the fission neutrons were minimized through the use of a spherical shell of 235U surrounding the fission chamber. The present results for 232Th extend available multiplicity data into the previously unreported regions: 1.1 to 1.3 MeV and 17 to 49 MeV. The 235U results also extend significantly beyond previously reported data. For the 232Th case, previously observed deviations from linearity below 2 MeV and near the (n, n′f) threshold have been confirmed. In addition, this experiment suggests a continued rise in neutron multiplicity with decreasing incident neutron energy down to 1.1 MeV. A value for of 231Th(n,f) is inferred from the 232Th results above the (n,n′f) threshold. The 232Th measurements reported here for neutron energies above 15 MeV show an average value of , which agrees with a value calculated from the binding energies of the pre-scission evaporated neutrons and the assumed mean kinetic energies. The 235U data do not exhibit such a close agreement, suggesting that shell effects may be disappearing more rapidly in this nucleus as the excitation energy increases.