ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Robert E. Howe
Nuclear Science and Engineering | Volume 86 | Number 2 | February 1984 | Pages 157-167
Technical Paper | doi.org/10.13182/NSE84-A18198
Articles are hosted by Taylor and Francis Online.
Fission neutron multiplicities have been measured for neutrons incident on 232Th with energies ranging from 1.1 to 49 MeV and for neutrons incident on 235U with energies from 17 to 49 MeV. The Lawrence Livermore National Laboratory 100-MeV electron Linac was used to produce a white source of neutrons. Incident neutron energies were measured using time-of-flight techniques. Fission neutrons were detected in a liquid scintillator using pulse-shape discrimination. All 232Th neutron multiplicities were measured relative to 235U at each incident neutron energy. Above 15 MeV the multiplicities were determined for 232Th and 235U by using lower energy data from the 235U sample to measure the neutron detector efficiency. Corrections for angular anisotropy and spectral temperatures of the fission neutrons were minimized through the use of a spherical shell of 235U surrounding the fission chamber. The present results for 232Th extend available multiplicity data into the previously unreported regions: 1.1 to 1.3 MeV and 17 to 49 MeV. The 235U results also extend significantly beyond previously reported data. For the 232Th case, previously observed deviations from linearity below 2 MeV and near the (n, n′f) threshold have been confirmed. In addition, this experiment suggests a continued rise in neutron multiplicity with decreasing incident neutron energy down to 1.1 MeV. A value for of 231Th(n,f) is inferred from the 232Th results above the (n,n′f) threshold. The 232Th measurements reported here for neutron energies above 15 MeV show an average value of , which agrees with a value calculated from the binding energies of the pre-scission evaporated neutrons and the assumed mean kinetic energies. The 235U data do not exhibit such a close agreement, suggesting that shell effects may be disappearing more rapidly in this nucleus as the excitation energy increases.