ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Iván Lux and Zoltán Szatmáry
Nuclear Science and Engineering | Volume 89 | Number 2 | February 1985 | Pages 137-149
Technical Paper | doi.org/10.13182/NSE85-A18188
Articles are hosted by Taylor and Francis Online.
Given a number of independent realizations of the k-dimensional random variable x = (x1, x2,…, xk), the components of which may be correlated or independent, each has the same marginal expectation. The question is how the componentwise averages over the realizations are combined to yield an unbiased nearly optimum estimate of the common mean, and how the variance of the mean is to be estimated. An answer is given for the extreme cases of a small number of realizations and of rare events, when the majority of realizations is meaningless and only a small fraction of the samples contributes effectively to the estimate. It is shown how the sample statistics, based on the maximum likelihood estimates, are corrected to yield unbiased estimates. The results can readily be applied in Monte Carlo calculations and in evaluations of experimental data.