ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
J. S. Hendricks, L. L. Carter
Nuclear Science and Engineering | Volume 89 | Number 2 | February 1985 | Pages 118-130
Technical Paper | doi.org/10.13182/NSE85-A18186
Articles are hosted by Taylor and Francis Online.
A synergistic method is described for the angle biasing of anisotropic scattering kernels in Monte Carlo calculations. The method generalizes Dwivedi's suggestion of using the exponential transform to cancel the undesirable fluctuations of angle biasing. Only photons are examined because the biasing of the Klein-Nishina scattering kernel can be treated analytically in contrast to more general neutron scattering kernels, which would require a numerical treatment. Three-dimensional continuous-energy results indicate that angle biasing in conjunction with the exponential transform is better than either by itself and greatly enhances Monte Carlo transport for the cases shown.