ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Wallace F. Walters
Nuclear Science and Engineering | Volume 92 | Number 2 | February 1986 | Pages 192-196
Technical Paper | doi.org/10.13182/NSE86-A18165
Articles are hosted by Taylor and Francis Online.
The equations of the high-order linear-nodal numerical scheme are cast in an augmented weighted-difference form for three-dimensional Cartesian nodes. The coupling exhibited by these equations indicates that this new algorithm is simpler and, hence, faster than previous nodal schemes of this degree of accuracy. A well-logging problem and a fast reactor problem are examined. The new scheme developed is compared with the classical linear-linear nodal scheme and the diamond-difference scheme. For the well-logging problem, it is found that the new scheme is both faster and simpler than the classical linear-linear nodal scheme while sacrificing little in accuracy. Even though the new scheme is more accurate than the diamond-difference scheme for the reactor problem, the results indicate that state-of-the-art acceleration methods are needed for nodal schemes.