ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
D. E. Wood, K. R. Birney, E. Z. Block
Nuclear Science and Engineering | Volume 18 | Number 1 | January 1964 | Pages 116-125
Technical Paper | doi.org/10.13182/NSE64-A18148
Articles are hosted by Taylor and Francis Online.
Lattice parameters have been measured for natural uranium concentric tubes and solid fuel elements of 2.5 inches outside diameter in the Physical Constants Testing Reactor (PCTR). The primary quantities measured are the mass of copper required to reduce k∞ to one, copper activations throughout the lattice, and cadmium ratios for U238 capture, U235 and U238 fission, copper, gold, and lutetium. The results derived from these measurements are k∞, ε, and the effective neutron temperature for the concentric tube in a 10.5-inch graphite lattice with both water and air in the coolant channels; k∞ and for the concentric tube in an 8.375-inch lattice, water cooled only; and k∞, , and for the solid fuel in a 10.5-inch graphite lattice, water and air cooled. The effective fraction of the internal surfaces for resonance capture was determined to be 0.50. The average value of η for natural uranium in these lattices was found to be 1.30.