ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
James Y. N. Wang
Nuclear Science and Engineering | Volume 18 | Number 1 | January 1964 | Pages 18-30
Technical Paper | doi.org/10.13182/NSE64-A18138
Articles are hosted by Taylor and Francis Online.
Titanium and titanium alloys are not generally resistant to mercury in the temperature range between 371 to 538 C. The extent of corrosion is dependent upon alloy composition and heat treatment. Nitrided surfaces of titanium and its alloys exhibit high resistance to mercury at 538 C for periods up to 14 days. At this temperature, mercury vapor attacks certain nitrided alloys while others are immune. For instance, the corrosion of a nitrided Ti/8wt% alloy was found to be insignificant; however, severe corrosion occurs at the nitrided layer of Ti/7wt% Al/12wt% Zr.a A study of the effect of metallic additives to mercury on the corrosion resistance of titanium at 538 C has also been made. It has been shown that a saturated mercury solution of zirconium or nickel exerts a strong influence in reducing corrosion. The films formed may act as a diffusion barrier between solid and liquid.