ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Adnan A. Aswad, G. R. Dalton
Nuclear Science and Engineering | Volume 24 | Number 1 | January 1966 | Pages 49-59
Technical Paper | doi.org/10.13182/NSE66-A18123
Articles are hosted by Taylor and Francis Online.
The one-velocity time-independent neutron integro-differential transport equation is converted into an integral equation by the use of a homogeneous Green's function. The neutron flux, Green's function, and source are expanded in spherical harmonics. The integrations over the angles are carried out by the use of the spherical harmonic orthogonality relation. The net result is a set of coupled integral equations in the flux angular moments. Relations that give the Green's function angular moments are derived for any nonreentrant geometry and all boundary conditions applicable to the neutron transport equation. The conditions for which the scalar flux and some of the flux higher moments can be calculated exactly are discussed. Sample problems of unit slab cells that meet these conditions, are solved. The results are found to be in excellent agreement with those of the DS16 and the TRANVAR codes. A method to estimate the effect of the flux non-zeroth angular moments and the spatial truncation errors on the scalar flux is introduced. A sample problem of a heterogeneous unit slab cell is presented. It is found that the errors in the scalar flux due to neglecting the flux non-zeroth angular moments and the spatial truncation error are each of the order of 0.03% for this problem.