ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
V. V. Verbinski
Nuclear Science and Engineering | Volume 27 | Number 1 | January 1967 | Pages 67-79
Technical Paper | doi.org/10.13182/NSE67-A18043
Articles are hosted by Taylor and Francis Online.
Experiments in which a wide range of scattering materials in the form of slabs were bombarded by reactor neutrons showed that the angular distribution of low-energy (<5-eV) neutrons leaking from the opposite side of a slab is independent of the source term and of the slab thickness for thicknesses greater than some minimum thickness zmin. In the case of pure lead, pure water, and mildly poisoned water, the resulting distributions are in agreement with the Fermi expression Φ(µ) = 1 + √3 µ. The results for pure lead are also in excellent agreement with one-velocity calculations. An imperfect experiment with poisoned lead is in qualitative agreement with one-velocity calculations. The angular distribution for LiH is described by Φ(µ) = 1 + Aµ where A is less than √3 for subcadmium neutrons and greater than √3 at 1.5 and 5 eV. For energies above 5 eV, a Monte Carlo calculation on LiH showed that A continues to rise to a peak value of about 2.5 at 30 eV, after which it decreases to a value of √3 above 103 eV, where the absorption cross section of lithium becomes negligible. The applicability of two neutron transport codes that numerically integrate the Boltzmann transport equation was tested in additional calculations for LiH and water. Although the two codes have been used successfully in other types of shielding calculations, they yielded angular distributions for the same material that disagreed with each other, as well as with some experimental data. This suggests that the development of neutron transport codes should include angular distribution tests.