ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
V. V. Verbinski
Nuclear Science and Engineering | Volume 27 | Number 1 | January 1967 | Pages 51-66
Technical Paper | doi.org/10.13182/NSE67-A18042
Articles are hosted by Taylor and Francis Online.
Measurements of the spectra of neutrons moderated in LiH were made in the energy range of about 0.01 to 600 eV, and the results were compared with calculated spectra obtained from a Monte Carlo calculation, a direct numerical integration of the Boltzmann equation (NIOBE code), a moments numerical calculation, and three infinite-medium thermalization calculations, each utilizing a different scattering kernel. The measurements were carried out by irradiating slabs of LiH with neutrons having a near-fission spectrum. The spectra of the leakage flux, of the forward-directed flux, and of the scalar flux within the slab were obtained at neutron penetrations of 2.5 to 10 cm. Below 30 eV, the leakage flux and scalar flux attained an asymptotic spectral shape at a penetration of 2.5 cm, and the forward-directed flux at about 5 cm. The shapes of the calculated spectra agree with the shapes of the measured spectra for all energy regions in which each calculation is valid. A large discrepancy between the NIOBE code predictions and the measurements below 0.08 eV is caused by upscattering and molecular binding effects, which are neglected by NIOBE. These effects were included in a neutron thermalization calculation for an infinite medium with a constant source density; however, good agreement with measurement was obtained only for the case in which the measurement had been made in a nearly gradient-free region. In a region of strong flux gradients, the spectrum of the forward-directed flux is shown to be related to that of the scalar flux with good accuracy by the Purohit expression, according to a NIOBE code calculation which yielded both spectra.