ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
E. E. Lewis, F. T. Adler
Nuclear Science and Engineering | Volume 31 | Number 1 | January 1968 | Pages 117-126
Technical Paper | doi.org/10.13182/NSE68-A18014
Articles are hosted by Taylor and Francis Online.
A method has been developed for calculating resonance effects in nuclear reactor lattices without the two widely used assumptions: 1) that the neutron flux is spatially independent within each region of the lattice cell; 2) that the flux recovers an asymptotic l/E form between resonances. The neutron slowing down problem is formulated in terms of a Boltzmann integral equation, and the correct transport kernel is derived for a Wigner-Seitz equivalent cell with isotropic scattering in the laboratory system. A new method of polynomial approximations is then used to reduce the transport problem to matrix form. The result is a set of integral equations in lethargy for the neutron flux at a number of discrete ordinates. These equations are numerically integrated to obtain the neutron flux as a function of position and energy. Resolved resonance integrals are calculated for a number of 238U-graphite lattices with both metal and oxide rods. Where comparisons are made, the results are in excellent agreement with accurate Monte Carlo calculations. Both the flat flux and flux recovery assumptions are found to cause significant overestimates of the resonance integrals, the errors increasing with the rod radii. The temperature coefficients, however, are less sensitive to these assumptions.