ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
J. T. Wajima, H. Yamamoto, H. Kikuchi, T. Ohnishi, S. Kobayashi
Nuclear Science and Engineering | Volume 31 | Number 1 | January 1968 | Pages 19-31
Technical Paper | doi.org/10.13182/NSE68-A18004
Articles are hosted by Taylor and Francis Online.
The microparameters including the thermal-neutron disadvantage factor, DF, the epi- to sub-Cd neutron capture ratio in 238U, ρ28, the epi- to sub-Cd fission ratio in 235U, δ25, and the ratio of the epi-Cd 238U fission to the sub-Cd 235U fission, δ28, were measured in the Ozenji Critical Facility for a seven-rod clustered nuclear superheat fuel element. The factors f, p, and ϵ were derived therefrom and the effect of 235U epithermal fissions on the neutron multiplication factor was observed to be 1.5% Δk/k. Flooding changed the individual factors f, p, and ϵ by amounts corresponding to −6.8% Δk/k, +4.7% Δk/k, and −2.9% Δk/k, respectively, yielding an overall change of −5.1% Δk/k. The maximum discrepancies between measurement and calculation are 1 to 3% for DF, ρ28 , δ25, and δ28; 0.3% Δk/k for f, p, and ϵ; and 0.4% Δk/k for the infinite multiplication factor. The calculation of the effects of flooding on f, p, ϵ, and the infinite multiplication factor agrees with the experiment to within 0.3 to 0.4% Δk/k. When performing the cell calculations, care was taken to determine how to cylinderize the unit cell to perform the one-dimensional calculations with the THERMOS code, how to select the value of the L factor to be used in the JUPITER code (modified MUFT) and how to incorporate the heterogeneous effect of fast fissions.