ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
George Patrick Lasche
Nuclear Science and Engineering | Volume 83 | Number 1 | January 1983 | Pages 162-173
Technical Paper | doi.org/10.13182/NSE83-A17997
Articles are hosted by Taylor and Francis Online.
A “back-of-the-envelope” method is presented for estimating neutron-induced radionuclide populations. The method uses energy-averaged neutron-reaction cross sections as base data and accounts for nonequilibrium nuclide formation by any sequence of transmutations; it provides for cases in which nuclides in transmutation sequences may be produced in more than one way or may decay or react to produce more than one product nuclide, and it accounts for both constant physical removal from circulating fluids and the severe depletion of parent nuclei. Evaluation in a series of time steps is not required; the calculation is done only for the time of interest. Estimates of neutron-induced radionuclide populations are made from the sum of population contributions corresponding to the most significant transmutation sequences by which the radionuclide is formed. Transmutation sequences are defined in such a way that population contributions corresponding to them can be evaluated from either exact analytic solutions or from a simple approximate procedure that always yields an upper bound to population contribution.