ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
J. D. Teachman, R. J. Onega
Nuclear Science and Engineering | Volume 83 | Number 1 | January 1983 | Pages 149-161
Technical Paper | doi.org/10.13182/NSE83-A17996
Articles are hosted by Taylor and Francis Online.
A nonlinear model is developed for the xenon-induced flux oscillation problem that occurs in nuclear power plants. The model is based on Galerkin's method of weighted residuals applied to multigroup diffusion theory. A similar linear model is developed by the same methods in order to consider the effects of the nonlinearities of the system. The effects of multi- and single-energy group considerations are also examined. The one- and three-energy group models give substantial differences in results for a 0.25% perturbation in the absorption cross section in various regions of the core. The effect of the number of profiles describing the flux distribution has an effect on the accuracy of the simulation. The minimum number of profiles is one higher than the number of regions into which the reactor is divided for a one-dimensional calculation. The use of additional profiles causes a small increase in the accuracy of the results at the expense of a dramatic increase in computational time.