ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Nam Zin Cho, Lawrence M. Grossman
Nuclear Science and Engineering | Volume 83 | Number 1 | January 1983 | Pages 136-148
Technical Paper | doi.org/10.13182/NSE83-A17995
Articles are hosted by Taylor and Francis Online.
A simple core control model is developed for the control of xenon spatial oscillations in load following operations of a current-design nuclear pressurized water reactor. The model is formulated as a linear-quadratic tracking problem in the context of modern optimal control theory, and the resulting two-point boundary problem is solved directly by the techniques of initial value methods. The system of state equations is composed of the one-group diffusion equation with temperature and xenon feedbacks, the iodine-xenon dynamics equations, and an energy balance relation for the core. Control is via full-length and part-length control rod banks, boron, and coolant inlet temperature. The system equations are linearized around an equilibrium state, which is an eigen-solution of the nonlinear static equations with feedback. The nonlinear eigenvalue problem is shown to have a unique positive solution under certain conditions by using the bifurcation theory, the solution being obtained by an iteration based on the use of monotone operators. A modal expansion reduces the linearized equations to a lumped parameter system. Minimization of an objective functional that expresses tracking the load with small control effort leads to a stiff two-point boundary value problem with boundary layers at both initial and final times, which is solved numerically. In a number of cases, results show that the optimal solution closely follows the desired load demand and maintains the desired power distribution with a small control effort.