ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Nam Zin Cho, Lawrence M. Grossman
Nuclear Science and Engineering | Volume 83 | Number 1 | January 1983 | Pages 136-148
Technical Paper | doi.org/10.13182/NSE83-A17995
Articles are hosted by Taylor and Francis Online.
A simple core control model is developed for the control of xenon spatial oscillations in load following operations of a current-design nuclear pressurized water reactor. The model is formulated as a linear-quadratic tracking problem in the context of modern optimal control theory, and the resulting two-point boundary problem is solved directly by the techniques of initial value methods. The system of state equations is composed of the one-group diffusion equation with temperature and xenon feedbacks, the iodine-xenon dynamics equations, and an energy balance relation for the core. Control is via full-length and part-length control rod banks, boron, and coolant inlet temperature. The system equations are linearized around an equilibrium state, which is an eigen-solution of the nonlinear static equations with feedback. The nonlinear eigenvalue problem is shown to have a unique positive solution under certain conditions by using the bifurcation theory, the solution being obtained by an iteration based on the use of monotone operators. A modal expansion reduces the linearized equations to a lumped parameter system. Minimization of an objective functional that expresses tracking the load with small control effort leads to a stiff two-point boundary value problem with boundary layers at both initial and final times, which is solved numerically. In a number of cases, results show that the optimal solution closely follows the desired load demand and maintains the desired power distribution with a small control effort.