ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
Edward W. Larsen
Nuclear Science and Engineering | Volume 83 | Number 1 | January 1983 | Pages 90-99
Technical Paper | doi.org/10.13182/NSE83-A17992
Articles are hosted by Taylor and Francis Online.
A parameter ∊ is introduced into the discrete ordinates equations in such a way that as ∊ tends to zero, the solution of these equations tends to the solution of the standard diffusion equation. The behavior of spatial differencing schemes for the discrete ordinates equations is then studied, for fixed spatial and angular meshes, in the limit as ∊ tends to zero. We show that numerical solutions obtained by the diamond difference, linear characteristic, linear discontinuous, linear moments, exponential, and Alcouffe schemes all converge, in this limit, to the correct transport or diffusion result, while numerical solutions obtained by the weighted-diamond and Takeuchi schemes do not converge to the correct limiting result.