ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Y. Boneh, S. Goshen, Z. Karpas, O. Shahal, A. Wolf
Nuclear Science and Engineering | Volume 86 | Number 1 | January 1984 | Pages 106-109
Technical Note | doi.org/10.13182/NSE84-A17973
Articles are hosted by Taylor and Francis Online.
The neutron yields from several uranium compounds were measured, using a 3He detector. The results are compared to calculations based on the known “stopping power” for alpha particles and the thick target yield for (α, n) reactions of fluorine and oxygen. Good agreement is obtained between the calculated and measured results. It is thus argued that the method of calculation used can be confidently applied to predict the neutron yield of compounds containing alpha-emitting atoms and (α, n) productive elements. The possibility of online detection of impurities, such as UO3 or UO2F2 in UF4, in the production of uranium fuel rods is discussed.