ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
João Moreira, John C. Lee
Nuclear Science and Engineering | Volume 86 | Number 1 | January 1984 | Pages 91-105
Technical Paper | doi.org/10.13182/NSE84-1
Articles are hosted by Taylor and Francis Online.
An efficient method has been developed to represent the space-time behavior of neutron detector signals in nuclear reactors. The method is based on a simplified solution to the neutron shape function in the framework of a quasi-static approximation to the time-dependent diffusion equation. The shape function is obtained as a sum of a modal expansion, representing the global flux perturbations, and a local function, representing the direct perturbations due to reactor parameter changes. The method was applied to the analysis of both integral and differential rod worth measurements obtained at the critical high-temperature gas-cooled reactor test facility, Kahter. The analysis of the Kahter data indicates the applicability of the proposed method in accounting for space-time effects in detector signals.