ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
João Moreira, John C. Lee
Nuclear Science and Engineering | Volume 86 | Number 1 | January 1984 | Pages 91-105
Technical Paper | doi.org/10.13182/NSE84-1
Articles are hosted by Taylor and Francis Online.
An efficient method has been developed to represent the space-time behavior of neutron detector signals in nuclear reactors. The method is based on a simplified solution to the neutron shape function in the framework of a quasi-static approximation to the time-dependent diffusion equation. The shape function is obtained as a sum of a modal expansion, representing the global flux perturbations, and a local function, representing the direct perturbations due to reactor parameter changes. The method was applied to the analysis of both integral and differential rod worth measurements obtained at the critical high-temperature gas-cooled reactor test facility, Kahter. The analysis of the Kahter data indicates the applicability of the proposed method in accounting for space-time effects in detector signals.