ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Pierre Benoist
Nuclear Science and Engineering | Volume 86 | Number 1 | January 1984 | Pages 22-40
Technical Paper | doi.org/10.13182/NSE84-A17967
Articles are hosted by Taylor and Francis Online.
A simple formalism, which can be introduced into routine analyses, is presented for the calculation of the effect of sodium voiding on neutron leakages in a fast reactor lattice. The diffusion coefficients in plane or in two-dimensional lattices are calculated following a method that is very analogous to the method proposed earlier by the author for the treatment of thermal reactors. The two situations, sodium present and sodium voided, are calculated with the same approximations. It is known that it is impossible in the situation where the sodium is voided to calculate buckling-independent diffusion coefficients, for they diverge. These coefficients are hence calculated in both situations at the lowest order of the expansion in terms of the buckling, which introduces a logarithmic term. The calculation is performed in the actual geometry of the lattice without cylindricalizing the cell.