ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
C. Budtz-Jørgensen, H.-H. Knitter
Nuclear Science and Engineering | Volume 86 | Number 1 | January 1984 | Pages 10-21
Technical Paper | doi.org/10.13182/NSE84-A17966
Articles are hosted by Taylor and Francis Online.
An ionization chamber with a Frisch grid is used to determine both the energy (E) of the charged particles emitted from the source positioned coplanar with the cathode, and the cosine of the emission angle (ϑ) with respect to the normal of the cathode. In the plane determined by the variables cosϑ and E, it is possible to identify an area that is unaffected by backscattering and self-absorption. Events belonging to this area show an isotropic angular distribution for alpha particles and also for fragments of fission induced by thermal neutrons, which, extrapolated to 90 deg, yields the absolute number of events. The capabilities of this technique are demonstrated by the investigation of four evaporated 235UF4 layers and one suspension-sprayed 235U3O8 layer. For the UF4 layers, the alpha-particle source strengths were determined, and agreement was found within 0.3% with values independently measured by low-geometry alpha counting. The same method was also applied to fission events induced by thermal neutrons. The determination of the total number of fission events is determined to an accuracy of better than 0.5%. The longstanding doubts on the magnitudes of fragment absorption and scattering are, in principle, circumvented by the present method, and therefore no assumptions on fragment ranges and scattering cross sections are needed. It is emphasized that the present method, within reasonable limits, is insensitive to source shape and homogeneity in its thickness.