ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
F. Capone, J. P. Hiernaut, M. Martellenghi, C. Ronchi
Nuclear Science and Engineering | Volume 124 | Number 3 | November 1996 | Pages 436-454
Technical Paper | doi.org/10.13182/NSE96-A17922
Articles are hosted by Taylor and Francis Online.
Irradiated light water reactor fuel from the BR3 reactor was thermally annealed up to 2500 K in a Knudsen cell, and the effusing vapors were measured by mass spectrometry. The experiments provide data on the stoichiometry evolution of the fuel during release as well as a reliable method to evaluate the diffusion coefficients of volatile and less-volatile fission products.The analysis of the data starts from diffusion of xenon, which clearly shows three typical release stages respectively controlled by radiation damage annealing, self-diffusion, and matrix vaporization. The experimental measurements are also in agreement with the predictions of intragranular trapping models.Barium and cesium showed faster release than xenon, the former being likely to diffuse atomically to the grain boundaries where no evidence of formation of stable zirconates was found. These results were compared with those obtained by a burnup-simulated fuel, where barium was initially present in a perovskite phase, producing essentially different release patterns.