ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Nam Zin Cho, Chang Je Park
Nuclear Science and Engineering | Volume 124 | Number 3 | November 1996 | Pages 417-430
Technical Paper | doi.org/10.13182/NSE96-A17920
Articles are hosted by Taylor and Francis Online.
We solve the neutron diffusion equation by a wavelet Galerkin scheme in this paper. Wavelet functions are generated by dilation and translation operation on a scaling function. The wavelet functions are localized in space and have a recursive property, so these properties may be utilized to solve a differential equation that has severe “stiffness. ”The wavelet Galerkin method (WGM) represents the solution as a summation of Daubechies’ scaling functions, which are also used as the weighting function. The Daubechies’ scaling functions have the properties of orthogonality and high smoothness. Unlike the finite element method, the weighting function is the Daubechies’ scaling function, and the unknowns determined are not the fluxes of the nodes but the coefficients of the scaling functions. The scaling functions are overlapping in the nodes and require special treatment at interfaces between nodes and at the boundaries. We tested the WGM with several diffusion theory problems in reactor physics. The solutions are very accurate with increasing Daubechies’ order and dilation order. The boundary conditions are also satisfied very well. In particular, the WGM provides very accurate solutions for heterogeneous problems in which the flux distribution exhibits very steep gradients.We conclude that it is worthwhile investigating further the WGM for reactor physics problems and that numerical integration and acceleration of the matrix equation must be improved so as to reduce computing time.