ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
G. C. Pomraning
Nuclear Science and Engineering | Volume 124 | Number 3 | November 1996 | Pages 390-397
Technical Paper | doi.org/10.13182/NSE96-A17918
Articles are hosted by Taylor and Francis Online.
If the scattering interaction in linear particle transport problems is highly peaked about zero momentum transfer, a common and often useful approximation is the replacement of the integral scattering operator with the differential Fokker-Planck operator. This operator involves a first derivative in energy and second derivatives in angle. In this paper, higher order Fokker-Planck scattering operators are derived, involving higher derivatives in both energy and angle. The applicability of these higher order differential operators to representative scattering kernels is discussed. It is shown that, depending upon the details of the scattering kernel in the integral operator, higher order Fokker-Planck approximations may or may not be valid. Even the classic low-order Fokker-Planck operator fails as an approximation for certain highly peaked scattering kernels. In particular, no Fokker-Planck operator is a valid approximation for scattering involving the widely used Henyey-Greenstein scattering kernel.