ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Yassin A. Hassan, J. H. Kim
Nuclear Science and Engineering | Volume 89 | Number 1 | January 1985 | Pages 70-78
Technical Paper | doi.org/10.13182/NSE85-A17884
Articles are hosted by Taylor and Francis Online.
Three-dimensional numerical computations of negatively buoyant cold jet injected into hot water flowing in a pipe are presented for various hot-to-cold flow rate ratios. A fine nodalization with a newly modified skew upwind differencing scheme is employed. The adoption of this scheme results in a significant reduction of the numerical diffusion errors. Under certain conditions of the jet Froude number, the hot water penetrates upward into the injector, resulting in a recirculatory flow region. Such penetration and recirculation enhance the mixing process, thus helping mitigate the pressurized thermal shock concern. A satisfactory agreement between the numerical temperature predictions with available experimental data is obtained.